

Introduction

Dr. Nasir Jalal PhD (Computer Science) Lecturer

CS & IT Department, CUVAS Bahawalpur

Course Detail

BS CS 5th Semester Fall 2022-2026

Course: Theory of Programming Languages Course Code: CS IT 507

Lecture: 4 (18-09-2024)

Outline Lecture 4

- Revision of Lecture 3
- Prerequisite of GFG
- What is Language
- Difference between Spoken language and Computer Language.
- What is CFG

Symbols

Symbols are an entity or individual objects, which can be any letter, alphabet or any picture.

- Example:
- 1, a, b, #

Alphabets

Definition:

A finite non-empty set of symbols (letters), is called an alphabet. It is denoted by Σ (Greek letter sigma).

Example:

• Examples:

$$\sum = \{A, B, C, D\}$$

$$\Sigma = \{0, 1,, 5\}$$

$$\Sigma = \{\#, \beta, \Delta\}$$

String

It is a finite collection of symbols from the alphabet. The string is denoted by w.

• Example 1:

If $\Sigma = \{a, b\}$, various string that can be generated from Σ are $\{ab, aa, aaa, bb, bbb, ba, aba.....\}$.

- A string with zero occurrences of symbols is known as an empty string. It is represented by ε.
- The number of symbols in a string w is called the length of a string. It is denoted by |w|.
- Example 2:
- w = 010
- |w| = 3

Words

• Definition:

Words are strings belonging to some language.

Example:

If Σ= {f} then a language L can be defined as L={fⁿ : n=1,2,3,.....} or L={f,ff,fff,....} Here f,ff,fff,... are the words of L

Valid/In-valid alphabets

- While defining an alphabet, an alphabet may contain letters consisting of group of symbols for example Σ₁= {B, aB, bab, d}.
- Now consider an alphabet
 Σ₂= {B, Ba, bab, d} and a string BababB.

Scan "BababB"

This string can be **tokenized** in two different ways

- (Ba), (bab), (B)
- (B), (abab), (B)

Which shows that the second group cannot be identified as a string, defined over $\boldsymbol{\Sigma}$

NOTE

• All words are strings, but not all strings are words.

Language

A language is a collection of appropriate string. A language which is formed over Σ can be **Finite** or **Infinite**.

• Example: 1

L1 = {Set of string of length 2} = {aa, bb, ba, bb} Finite Language

• Example: 2

L2 = {Set of all strings starts with 'a'} = {a, aa, aaa, abb, abbb, ababb} **Infinite Language**

Remarks

- While defining an alphabet of letters consisting of more than one symbols, no letter should be started with the letter of the same alphabet *i.e.* one letter should not be the prefix of another. However, a letter may be ended in the letter of same alphabet *i.e.* one letter may be the suffix of another.
- Σ₁= {B, aB, bab, d}
- Σ₂= {B, Ba, bab, d}

 $\boldsymbol{\Sigma}_1$ is a valid alphabet while $\boldsymbol{\Sigma}_2$ is an in-valid alphabet.

Length of Strings

• Definition:

The length of string s, denoted by |s|, is the number of letters in the string.

- Example:
 - $\Sigma = \{a, b\}$
 - s=ababa
 - |s|=5

Example:2 String Length

- Σ= {B, aB, bab, d}
- s=BaBbabBd
- Tokenizing=(B), (aB), (bab), (d)

|s|=4

Reverse of a String

• Definition:

The reverse of a string s denoted by Rev(s) or s^r, is obtained by writing the letters of s in reverse order.

• Example:

If s=abc is a string defined over Σ={a,b,c}
then Rev(s) or s^r = cba

Reverse of a String

- Example 2:
 - Σ= {B, aB, bab, d}
 - s=BaBbabBd
 - Rev(s)=dBbabaBB

CFG Overview

A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple

<u>Terminals</u> Represented using small case letter like a, b, c etc

<u>Non-Terminals</u>: The symbols that must be replaced by other things are called non-terminals. These symbols are represented using a capital letter like A, B, C, etc

<u>**Productions</u>**: The grammatical rules are often called productions or Principals.</u>

Start Symbol:

CFG Overview

A right-regular grammar is a **context-free grammar** in which the right-hand side of every production rule has one of the following forms: the empty string; a string consisting of a single non-terminal symbol; or a string consisting of a single terminal symbol followed by a single nonterminal symbol.

CFG Overview

CFG Example

∑ = {a,b}

productions:

- 1. S→XaaX
- 2. X→aX
- 3. X→bX
- 4. X→ ε

This grammar defines the language expressed by Regular Expression (a+b)^{*}aa(a+b)^{*}.

CFG Example

Some of the strings generated by CFG are

	-		
аа	Rule	Application	Result
	Start \rightarrow S	Start	S
aabaababaabb	$\mathbf{S} \rightarrow \mathbf{X}$ aa \mathbf{X}	S	X aa X
аааа	$\mathbf{X} \rightarrow \mathbf{a}\mathbf{X}$	X aa X	a X aa X
aabaabbbaaabbb	$\mathbf{X} \rightarrow \mathbf{a}\mathbf{X}$	a X aa X	aa X aa X
aabaabbbaaabbb	$\mathbf{X} \rightarrow \mathbf{a}\mathbf{X}$	aa x aa x	aaa X aa X
aaabbbbbaaabaaa	$\mathbf{X} \rightarrow \mathbf{b}\mathbf{X}$	aaa x aa x	aaab X aa X
aaabbbaaba	$\mathbf{X} \rightarrow \mathbf{b}\mathbf{X}$	aaab x aa x	aaabb x aa x
aaabbbaaba	$\mathbf{X} \rightarrow \mathbf{b}\mathbf{X}$	aaabb x aa x	aaabbb x aa x
aaaab	v		
aaaaaabaab	X → ε	aaabbb x aa x	aaabbbaa X
	$\mathbf{X} \rightarrow \mathbf{b}\mathbf{X}$	aaabbbaa X	aaabbbaab X
aaaababbaabb	$\mathbf{X} \rightarrow \mathbf{a}\mathbf{X}$	aaabbbaab <mark>x</mark>	aaabbbaaba X
aabbbbaaaaaabaaa			
	X → ε	aaabbbaabaX	aaabbbaaba
Process to generate string agaphhagha in evoluin in table			

Process to generate string aaabbbaaba in explain in table

CS & IT Department , CUVAS, Bahawalpur By: Dr. Nasir Jalal

THANKS

CS & IT Department , CUVAS, Bahawalpur By: Dr. Nasir Jalal